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APPENDIX

Alifanov Iterative Regularization Algorithm

James V. Beck

The iterative regularization aigorithm has been championed by
Alifanov and Rumyantsev in the USSR. It was orginally proposed by Alifanov
and is widely used in the Soviet Union. It can be used both for estimating
the surface heat flux and thermal properties as functions. There are
several variations of the method, depending, for example, if the steepest
descent or conjugate gradient methods are used. The method is not easy to
extract from the books and papers. The purpose of this appendix is to
document the algorithm and give the details in the order in which they can
be readily programmed. P. Lamm contributed to our understanding of this
problem and derived the basic equations which are given below.

The problem to be solved is

2
k‘a——g‘=pcg—'£, 0<x<L, 0<t<t, (A-1)
ax
. 8T(0.t) _ _ }
k o —qo(t) =7 (A-2)
-k QI%&*El = qL(t), known (A-3)
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T(x,0)

Tox) (A-4)

T(d,t) Y(t) (A-5)

The temperature is measured at location x = d and is denoted Y(t). For
simplicity, however, the known heat flux at x = L is assumed to be zero and

To(x) is set equal to a constant, which is taken to be zero.
Three problems are solved at each iteration. First, eqs. (A-1) to
(A-4) are solved with qo(t) replaced with its estimated function q(n)(t) for

the nth iteration. Then the adjoint and sensitivity problems must be

solved. The adjoint problem is

2
2 o e s - O[T, ta(e) - WO, 0<x <L, t =t to0
ax
(A-6)
3¥(0.t) (L. t)
(0.0 _ alL.t) _ (A-7,8)
Bz, ) = 0 (4-9)

Notice that this adjoint problem goes backward in time and starts at time

tf, the final time. The driving term in the %(x,t) problem is the
difference between the temperature calculated in the eq. (A-1) to (A-5)

problem and the measured temperature, Y(t). The units of ¥ are m2-K2/W.
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The sensitivity problem is the solution of

2

kWl -8l gcx<n, 0<t<t (A-10)
2 = Pt £
ax
Sk QﬁgéQ;El - o™y (A-11a)
QLB _ g (A-11b)
X
6(x,0) = 0 (A-12)

where p(n)(t) comes from the solution of the adjoint problem and is

described in step 7 below. The units of p(t) are the same as those of ¥,

namely m2—K2/W. The units of # are K3-m4/W2.
The above quantities are used in the approach to a minimum of the

function
te 2
§(q(t)) = Jo [Y(t) - T(d,t)]dt (A-13a)

Implicit in the iterative procedure is that S(+) is not precisely minimized

but is reduced to the level where it is just less than 62, or

s(m< 52 (A-13b)
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where the superscript n refers to the iteration and 62 is a measure of the
errors in the temperature measurements, Y(t). Other stopping criteria are
suggested in the 1985 paper by Alifanov and Balashova. The regularization
in the procedure for finding the function q(t) is incorporated in the
natural "viscosity" or slowness in the approach to the minimum provided by
the methods of steepest descent or conjugate gradient. The latter method
converges much more rapidly than the steepest descent method.

The procedure is now outlined in the form of an algorithm.

.

0. The geometry (L), properties (k, p and c), initial condition
(To(x)) measured temperature (Y(t)) and 62 are given.
. . (0)
Set n = 0 and start with an estimate of q(t). Usually ¢ (t) =0

is chosen.

1. Setn=mn+ 1. Solve the temperature problem using eqs. (A-1)

to (A-4) with q (t) replaced by the estimated function q(n)(t).
° y

Calculate
te
S(n)(tf) =J. vee) - 7™ (4, e)1%de (A-14a)
0
If
s(m) o 42 (A-14Db)

terminate the computations.
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2. Solve the adjoint problem for %(x,t), remembering to start at t

= tf and then working backward to t = 0. Use egs. (A-6) to (A-9). The

[}
derivative of S with respect to the q(n)(t) function is denoted S (n)(t) and

happens to be equal to the adjoint variable evaluated at x = 0,
vs(™ (6) = 300,654 (8)) (A-15)
3a. If n =1, set
+B _ o (A-16)

and go to step 5.

3b. If n = 2, calculate
t
K - jof p@ ey ™D ey - 9™ (o)) ar (4-17)

where all the auguments of ¥ are omitted for convenience and where the N

subscript denotes numerator.

4, If n =z 2, calculate

A (A-18)

4169




4170

where 7én—1) is obtained from step 10 of the previous iteration. (The D

denotes denominator.)

5a. For n = 1 or for the steepest descent method, use

™ (£ = ¢0,t:0™ (£)) (A-19)

5b. For n = 2 and for the conjugate gradient method, use
-1
p™ (1) = (0, t54™ (0)) + 4™ PV (e (A-20)

6. Calculate 0(n)(x,t) using eqs. (A-10) to (A-12).

7. GCalculate
@ _ [ ., () 2
Bp =_[ (67 (d,t)]"dt (A-21)
0
8. Calculate
@ _ (‘¢ (n) (n)
By =J0 P(0,t;q 7 (v))p Y (L)dt (A-22)

9. CGalculate
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p™ = )/ plm (a-23)

10. Calculate

t
7§ = [ F o, ™ o)) % (a-24)
0

11. Calculate
P ey = ¢y - pMp ™y | (A-25)

Go to step 1.

One relatively simple way to investigate the above algorithm is to
use the convolution integral to calculate the T's, ¥'s, and f§'s. For the

case of To(x) = T0 and qL(t) = 0, the temperature at any time tM can be

calculated using

6¢(d,tM-A)

t
(n) _ n(n) (M (n) haAhaAe ' a4
Ty~ =T 7 (dt,) = Io q () pye dx + T, (A-28a)

where ¢(d,t) is the temperature at x = d caused by a heat flux q of 1

starting at t = 0. Eq. (A-28a) can be approximated as
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g™ § ) Vhy gyt To MEL2, N (A-28b)
i=1
where
V.14l T PM-i41 T PM-i (A-28c)
Me At = t¢ (A-28d)

and ¢M-i is ¢ evaluated at x = d and time tyoi = (M-i)At, with At being the
time step. A simpler case than arbitrary d is for d being equal to L. Forxr

(n)

this case ¢k is approximated by

M.-k+1
£
(n) _ (n) _
¢k = } [Tk i1 C Yk +i-1] V¢i Jk = 1,2,...,Mf (A-29)
i=1
and
M
o =} pi™ Yoy in (4-30)
i=1
where
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pi™ - bi;ziu + WD) (A-31)

An integral such as ﬂén) in eq. (A-21) can be approximated by
Mg
(n) _ (n),2 .
ﬂD = } [0i ]7At (A-32)
i=1

c:proposal\alifanov.wmc
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